Upgrading maps with Linked Data

Lopez-Pellicer, Francisco J
Lacasta, Javier
Rentería, Walter

Barrera, Jesús
Lopez-de-Larrinzar, Juan
Agudo, Jose M

IAAA, Universidad de Zaragoza
GeoSpatiumLab
The Linked Map project

- **Our vision**
 - Explore new applications of **Linked Data** in **Geographic Information**

- **Our goals**
 - **Semantic upgrade** of OGC WMS (namely LMS)
 - **Semantic integration** of authoritative GI datasets and VGI **with provenance**
 - **Crowdsourcing platform for QA** of semantic integration
The Linked Map project

- The project was funded by PlanetData

- PlanetData (2010-2014)
 - http://www.planet-data.eu/
 - FP7 Network of Excellence, State-of-art of large-scale public data management
 - PlanetData Call 2 (2014): Call for short term projects (1 year)

- Partners
 - IAAA Lab (Universidad Zaragoza, Spain) http://iaaa.unizar.es/ Research Lab, OGC, INSPIRE, ISO, SDI initiatives
 - GeoSpatiumLab (Zaragoza, Spain) http://www.geoslab.com/ SME, focused on GI
 - CNIG (Spain) http://www.cnig.es/ National Geographic Institute, data provider
The Linked Map project

- **The motivating challenge**
 - VGI and GI integration
 - “Is VGI data believable for updating official maps?”
 - “Can crowdsourcing be useful for assessing this challenge?”
 - Key point: problem relevant for GI producers

- **Our contributions**
 - “Simple” semantic integration VGI & GI data → Use of W3C PROV data
 - Semantic upgrade of WMS → WMS behaving as a LD server
 - Crowdsourcing platform for integration QA → Challenges in the use of LD with maps
 - Evaluation experiments → Nichesourcing evaluation
The Linked Map project

• Additional scenario details
 – Data
 • GI: BCN BTN (national map of Spain, provided by CNIG)
 • VGI: OpenStreetMap, Wikipedia
 – Scope
 • Spatial: Mainland Spain & Balearic Islands
 • Subject: OSM feature types (roads, buildings, ...)

IAAA Grupo de Sistemas de Información Avanzados Universidad Zaragoza
Approach and implementation: architecture

Linked Map Platform
(aka crowdsourcing platform)

Users

Linked Map limits

Portal

Data access

SPARQL endpoint

LMS

WMS server

proxied requests

WMS content

OSM, Wikipedia, ...
(defaults to existing Linked Data datasets when available, e.g. linkeddata.es)

BCN25/BTN25, NGBE, ...
(defaults to existing Linked Data datasets when available, e.g. geoLinkedData.es)

Linked Map Service

Remote WMS

LMS client

LMS

Data Repository
(RDF store, SPARQL endpoint, ...)

Provisioning + Linking Service

OSM

Wikipedia

Wiki project
Georeferenzierung

Wikipedia Foundation

OSM Foundation

GeoFabrik

OSM

Wikipedia

Wikipedia project
Georeferenzierung

Wikipedia

SQL2DBpedia

RDF Data Backend

DBpedia Live

Live

IAAA Gruppo de Sistemas de Información Avanzados

Universidad Zaragoza
Approach and implementation: semantic integration

• **Tasks**
 - Transform datasets into LD → **GeoKettle** (ETL) + **MorphRDB** (tool)+ **GeoSPARL** (vocabulary)
 - Simple integration (name, type, location) → **Silk**
 - Provenance → Transformation + Integration → **W3C PROV** extended
 - Storage and GeoSPARQL access → **STRABON**

• **Results**
 - BCN/BTN 25: 13M triples, OSM: 35M triples, Enrichment: 3M triples
 - **Provenance tracking at feature level** encoded in **PROV-XML** in RDBMS & **RDF**
 • For each feature: File source, row source, transformation script, generation date
Approach and implementation: semantic integration

- **Track provenance at feature level with PROV**
 - Family of W3C Recommendations and Notes
 - http://www.w3.org/TR/prov-overview/
 - Goal: enable publication and interchange of provenance on the Web
 - Emerging standard (2013)
 - Available in RDF and XML
 - Compatible with ISO 19115 lineage model
 - All ISO 19115 lineage models can be represented
 - ISO metadata record = PROV bundle + explicit primary topic
 - “scope” (in the sense of view/selector) is not part of PROV but can be added
Approach and implementation: semantic upgrade

- **Transparent enablement WMS (Linked Map Service - LMS)**
 - WMS 1.3.0 *reverse proxy*
 - Semantic upgrade of WMS requests by *content negotiation*
 - e.g. GetMap: return RDF resources spatially related to the map
 - **Web links headers** (RFC 5899) link both WMS and semantic responses

![Diagram of WMS and LMS connections](image)
Approach and implementation: semantic upgrade

• **LMS is from the point of view of a WMS client**
 - A WMS server
 - WMS response headers contain **Web links** to alternate representations of capabilities, map images, etc;
 - A PNG map contains links to a JPEG map (WMS request) or RDF (machine processable representation)

• **LMS is from the point of view of a generic REST client**
 - A Linked Data endpoint that contains as resources map tiles and data
 - Each possible GetMap, GetFeatureInfo or GetCapabilities request denotes a resource
 - Resource **representations contain links to equivalent KVP WMS requests**
 - Response headers contain **Web links** to alternate representations, including KVP WMS requests
Approach and implementation: semantic upgrade

- **Architecture**

 - Service Capabilities
 - REST API
 - Direct URI resolution
 - WMS 1.3.0
 - GET endpoint
 - POST endpoint
 - DELETE endpoint
 - PUT endpoint
 - PATCH endpoint
 - KVP endpoint
 - XML endpoint
 - Web controllers
 - Data management
 - HTML Templates
 - Source Config
 - SPARQL 1.1
 - WMS 1.3.0

- **Implementation**
 - Java based (Spring + Pubby)
Approach and implementation: crowdworking platform

- **Frontend**
 - Map client
 - Layer of linked features
 - User can add, review QA of links & features, browse data

- **Backend**
 - LMS + GeoSPARQL endpoint

- **Evaluation experiments**
 - Open
 - Can the platform (and the task) engage a big community? → Failed to create a critical mass
 - Focused
 - Nichesourcing: Can be used by a small engaged but professional community for QA of data and links? → Yes, but be careful with authority bias
The platform is available at ...

- http://linkedmap.unizar.es/crowdsourcing-platform/

Search/Browse the map

Add QA review

Review QA comments

Access data (HTML/RDF)
Lessons learned

• **W3C PROV**
 - It is possible to track ETL geo workflows with PROV
 - ISO 19115 compatible, can be stored in RDF as XML literal (as Geo)

• **Semantic upgrade of geoservices**
 - Services can be upgraded transparently using (carefully) existing IETF/W3C standards and best practices
 - Unexpected opportunities: RFC 5899 can increase discoverability of OGC web services in search engines

• **Use of LD with maps**
 - Flexible and rich data model
 - Experiments do not take full advantage of semantics (e.g. Inference)
Concluding remarks

• Years ago the OGC standards were ahead of its time

• Can we affirm this today? Yes, no? Are OGC standardization programs slow?

• I think that we can upgrade them without breaking by using wisely W3C/IETF standards

• Do you agree? What do you think?

If you wish know more:
http://linkedmap.unizar.es/
Francisco J Lopez-Pellicer
fjlopez@unizar.es
IAAA, Universidad de Zaragoza